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The theoretical foundations of the effect of superdeep penetration are considered, a concrete case of loading
of an obstacle by a powder flux is calculated, and the calculation data are compared with the available re-
sults of a nature experiment.

The superdeep-penetration effect discovered approximately 25 years ago immediately came to the attention of
researchers [1–9], but till now it has not been exhaustively explained from the viewpoint of the theory of interaction
of solid bodies. A description of the experimental results of numerous investigations carried out by different groups of
scientists is given in [10]. In the present paper, the theoretical aspects of this phenomenon are described.

Necessary Condition of Superdeep Penetration. Virtually all researchers studying superdeep penetration [1–
7, 9] arrive at the conclusion that the material near the penetrating particles must be made softer locally. To do this,
the energy of interaction of a particle with the material of the obstacle must be concentrated in the slip plane where
this particle moves; otherwise it will be jammed in the near-surface layers of the obstacle without overcoming the dis-
tance Dd. To implement this softening, it is necessary that the characteristic time of interaction τint = d ⁄ U be not
longer than the time it takes for the energy to be removed from the zone of interaction by the thermal mechanism
τth = ∆2 ⁄ a. The relation obtained
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 ,   or   d ≤ dlim = 

∆2
U

a
 , (1)

is the necessary condition of occurrence of superdeep penetration, which was formulated for the first time in [1]. It
sets the limiting size of the penetrating particles dlim. Particles with d > dlim cannot penetrate into the obstacle. How-
ever, as is proved in [3], the fulfillment of (1) is inadequate to implement superdeep penetration.

Sufficient Condition of Superdeep Penetration. After the collision with the surface of the obstacle, the flux
particles continue to move in the metal that has already lost its strength if condition (1) is fulfilled. At the initial stage
of their motion, the velocity of the particles decreases rapidly. This continues until the depth of penetration of the par-
ticles h exceeds d. Let us consider the motion of a particle at depth h ≥ d on condition that the action of the particle
flux produces the field of the pressure p in the obstacle. We assume that over a physically short time interval ∆t the
process can be approximated using the representations of stationary flow of a viscous fluid around a particle. We use
the results obtained in [11] on calculation of the drag force in the case of stationary flow of a viscous fluid around a
body of arbitrary shape. The component of this force in the direction of flow Fx is equal to

Fx = − ρU  ∫ 
∆S

 vxdydz , (2)

where x coincides with the direction of motion of the particle (striker), and y and z are perpendicular to it. The inte-
gration is made over the area of the cross section ∆S of the wake which is formed by the particle and is separated
from its back surface by a large distance. Here U is the constant velocity of the viscous fluid flow incident on the
body, and the true velocity of the fluid at each point will be U + v, where v < < U. At infinity, v becomes zero. Evi-
dently, the drag force depends directly on the cross-sectional area of the wake formed by the striker in the fluid. In
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this case (we will assume for the sake of definiteness that the particle has a spherical shape), this wake is a channel
formed by the particle moving in the obstacle. However, as a result of the action of the particle flux on the surface
of the obstacle, in it there arises the field of the pressure p under which the cross section of the wake significantly
decreases. In the limit, if the channel in the wake of the particle closes completely, ∆S → 0 and the integral in (2) also
tends to zero. In this case, the particle moves uniformly without meeting resistance from the fluid. This is possible if
the time of complete closing of the channel τcl does not exceed τint. The spherical particle, moving in the material,
forms a cylindrical channel. The time it takes the channel to close can be determined from the system of equations for
the one-dimensional case with axial symmetry [12]:
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The last expression in (3) is the equation of state of the obstacle material. Let us assume that the pressure in the ob-
stacle changes relatively slowly in comparison with τint. Then, it may be logically assumed that the radial velocity
component of the medium also depends weakly on time, ∂u ⁄ ∂t = 0. At pressures of D10 GPa realized in the case of
superdeep penetration, the compressibility of a metal manifests itself insignificantly; therefore, instead of the second
equation of (3), we obtain
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 . (4)

Having substituted (4) into the first equation of (3), we will have − 
u2

r
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∂r
. Replacing the pressure gradient by its

average value −2p ⁄ d, in the first approximation we obtain

u = − √ 2pr
dρ

 . (5)

By definition, u = dr/dt. Substituting this quantity into (5), we arrive at the differential equation

dr
dt

 = − √ r  √ 2p
dρ

 . (6)

Integration of (6) with the conditions r(t = 0) = d/2 and r(t = τcl) = 0 gives

τcl = √ρd
2

p
 .

(7)

The fact that the channel must close over a period of time shorter than the characteristic time of interaction τint yields

Up ≤ Umax = √ p
ρ

 . (8)

In its meaning, (8) is a sufficient condition of superdeep penetration. If it is not fulfilled, a particle will be intensely
retarded in the obstacle until its velocity is equal to Umax. Once Up = Umax, or Up ≤ Umax initially, the motion of an
object in the obstacle material will be uniform if we disregard the random processes of its collisions with inclusions
and inhomogeneities, characteristic of any actual metal. An unusual kind of analog of the classical D’Alembert paradox
[11, 12] occurring in a perfect fluid is realized. It can be realized in the case considered (the softened obstacle mate-
rial differs greatly from a perfect fluid in its properties), because the external energy source (partial flux) does a cer-
tain work and supplies the obstacle with an energy dissipating in it and providing the closing of the channels in the
wake of the penetrating particles, which permits them to move in the obstacle material without meeting resistance. The
assumption that the D’Alembert effect is responsible for superdeep penetration was made for the first time in [1].
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Some Initial Conditions of Superdeep Penetration which Follow from the Necessary and Sufficient Con-
ditions. The above necessary (1) and sufficient (8) conditions of superdeep penetration make it possible to determine
a number of the important characteristics of this process. For example, when the particle size is fixed, from (1) one
can determine the minimum velocity of the particles at which superdeep penetration is still possible:

Up ≥ Umin = 
ad

∆2 , (9)

which will be Umin C 315 m/sec for iron at ∆ = 1.5⋅10−6 m, d C 55⋅10−6 m, ρ = 7830 kg/m3 [9], and a = 1.29⋅10−5

m2/sec. It follows from conditions (8) and (1) that the inequalities Umin ≤ Up ≤ Umax must always hold for the velocity
of the penetrating particle. This means that, at least, Umin ≤ Umax. Whence we calculate the threshold (critical) pressure
in the obstacle, i.e., the minimum pressure necessary for realization of superdeep penetration:

ad

∆2 ≤ √ p

ρ
   or   p ≥ pcr = 

ρa
2
d

2

∆4  . (10)

In our case (steel obstacle) we have pcr C 0.78 GPa. Conditions (8) and (9) obtained for the first time in [13] deter-
mine the narrow "corridor" of the particle velocities at which superdeep penetration is possible. In the calculations
with the use of (9) we are dealing with the velocity with which a particle comes to the surface of the obstacle, while
(8) determines the maximum velocity of a particle retarded in the near-surface obstacle layers, where the superdeep-
penetration mechanism does not act. According to the conclusions drawn in [13], by the time the superdeep-penetration
mechanism begins to act the velocity of the particle must be

Vp = √U0 exp (− Z) − 
p
ρ

 (1 − exp (− Z))  , (11)

where

Z = 
ρSd
M

 . (12)

Parameters of the Gas-Powder Flux Accelerated by an Explosive Accelerator. Superdeep Penetration.
Further development of the superdeep-penetration model is impossible without determining the gas-powder flux gener-

Fig. 1. Diagram of the accelerator of powder particles, used in the experiments
on superdeep penetration in [16, 17]: 1) electric detonator, 2) explosive charge,
3) powder packing, 4) regulating support, 5) obstacle.
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ated by an axially symmetric accelerator with a conical recess (Fig. 1). This generator was used in [14–17] for accel-
eration of the particles of stannic (electrolytic)-bronze powder. The particle flux was modeled numerically [3, 15, 16].
The calculations carried out made it possible to obtain the characteristics of the flux in the form of isolines of the
basic hydrodynamic parameters (Fig. 2). Figure 2a shows the isolines of the density (semiboldface lines) and the lon-
gitudinal velocity (thin lines) of the flux at the initial period of its interaction with the obstacle (t = 50 µsec and L =
0.11 m; a unit of density corresponds to 1000 kg/m3 and a unit of velocity corresponds to 4000 m/sec). The time is
measured from the beginning of the detonation of the explosive charge; in our case, the explosive is 6ZhV ammonite.
A thin high-velocity jet (Fig. 2a) propagating along the axial line with a velocity of the order of 0.75D is clearly de-
fined. For 6ZhV ammonite, D C 4000 m/sec at the initial density ρe = 1000 kg/m3. The density of the jet is initially
low (ρ0 C 300–400 kg/m3). At t = 75 µsec, the velocity of the jet markedly decreases while its density slightly in-
creases (Fig. 2b). By the instant of time t = 100 µsec, the major part of the flux comes to the surface of the obstacle
(Fig. 2c) and the rate of interaction decreases constantly, whereas the density of the flux increases constantly. By the
time t = 150 µsec, the interaction occurs at a very small velocity (D300 m/sec) and by t C 169 µsec it stops com-
pletely. The integral change in the hydrodynamical parameters of the gas-powder flux with time is presented in Fig.
3a and b. The number of particles interacting with the obstacle per unit time throughout the interaction cross section
σint is equal to

N = ρ0U0σint . (13)

The dependence of N on the loading time t for our concrete case is given in Fig. 3c. The total number of the particles
interacting with the obstacle during the time interval from t to t + ∆t is determined as

n =  ∫ 
t

t+∆t

 N (Θ) dΘ . (14)

However, the number of particles obtained from formula (14) will always be overstated. This is because the model de-
veloped in [3, 15, 16] cannot in essence describe the collisional interactions in the flux and gives no way of taking
into account the process of sticking of particles to the surface of the obstacle and the process of blocking which ac-
companies the interaction and at which the obstacle surface is screened by a cloud of particles reflected from it. Ac-

Fig. 2. Isolines of the density (semiboldface curves) and the velocity (thin
curves) of the flow generated by the explosive accelerator: a) t = 50, b) 75, c)
100, and d) 150 µsec.
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cording to [16, 17], as a result of this inevitable loss, less than 10% of the particles coming to the surface of the ob-
stacle can interact with it. Figure 4 shows a fairly exact pattern of the penetration. From the beginning of the interac-
tion up to the first intersection of curve 2 and the straight line 3 in Fig. 4, superdeep penetration is impossible since
the pressure generated in the obstacle by the particle flux is lower than the critical pressure. From the instant of the
first intersection of curves 2 and 3 to the intersection of curves 1 and 2 the velocity Vp is higher than the velocity
Umax. In this interval, the velocity of the particles is too high for superdeep penetration, the channel behind the parti-
cle closes incompletely, and the drag force is nonzero. The velocity of the particles begins to rapidly decrease until it
is equal to Umax, whereupon the object moves in the material with a given velocity uniformly and rectilinearly unless
it is confronted by inhomogeneities or inclusions contained in the actual material of the obstacle. The interactions with
these barriers can substantially decrease the velocity of a penetrating object and change the direction of its movement.
The particles interacting with the obstacle from the instant of time corresponding to the intersection of curves 1 and 2
up to the intersection of curves 1 and 3 (Fig. 4) move with a velocity Umin ≤ Vp ≤ Umax. All the particles that came
to the obstacle at a later time (Fig. 4) have a velocity Vp < Umin and are incapable of penetrating, since the necessary
condition of superdeep penetration is not observed for them. However, the process of movement of particles that began
to move to the obstacle earlier can occur up to the instant of time corresponding to the second intersection of curves
2 and 3. At this point, the pressure becomes lower than the critical pressure once again and superdeep penetration be-
comes impossible. A numerical approximation of the above-described dependences allows one to calculate the number

Fig. 3. Dependences of the longitudinal velocity of the flux U0 (a), its density
ρ and pressure p (b), and the number of particles in the cross section of inter-
action of the flux with the obstacle per unit time N (c) on the loading time. t,
µsec; U0, m/sec; ρ, kg/m3; p, GPa; N, 1/sec.

Fig. 4. Velocity curves for steel loaded by a particle flux: 1) Up, 2) Umax; 3)
Umin. Vp, m/sec; t, µsec.
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of particles participating in the process of penetration at each its stage. Let us denote the beginning and the end of the
process of loading of the obstacle by a gas-powder flux by t00 and tfin, the instants of time corresponding to the in-
tersections of curves 1 and 2 and 1 and 3 by t12 and t13, and the instants of time corresponding to the first intersec-
tion of curves 2 and 3 by t23 and to the second intersection of curves 2 and 3 by t32. The total number of particles
participating in the interaction will be equal to

Nint =  ∫ 
t00

tfin

 N (Θ) dΘ , (15)

and the number of particles penetrating by the mechanism of superdeep penetration will be

NSDP =  ∫ 
t23

t12

 N (Θ) dΘ + ∫ 
t12

t13

 N (Θ) dΘ . (16)

The integral in (16) is divided into two parts to underscore that the fraction of particles determined by the second in-
tegral in (16) participates in superdeep penetration if the necessary and sufficient conditions of superdeep penetration
are accurately observed. The first integral of equality (16) corresponds to the part of the flux in which a uniform pene-
tration is preceded by the stage of slow motion. Let us denote these numbers of particles by N23 and N12 respectively.
The fraction of the penetrating particles of the flux can be determined as

δSDP = 
NSDP

Nint
 = 

N23

Nint
 + 

N12

Nint
 = δ12 + δ23 . (17)

From the results of the numerical investigations, δ23 C 0.0065 and δ12 C 0.0021. In this case, less than one percent of
the particles coming to the obstacle participate in the process of superdeep penetration. Here, account is taken of the
fact that, because of the blocking and sticking processes, less than 10% of all the particles coming to the obstacle in-
teract with it. At the same time, as is seen from Fig. 4, the highest-velocity part of the particle flux, equal to

 δout = Nint
–1

  ∫ 
t00

t23

 N (Θ) dΘ , (18)

Fig. 5. Dependence of the depth of penetration of particles H on the loading
time t. H, m; t, µsec.

Fig. 6. Distribution of particles n over the penetration depth H. H, mm.
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does not participate in superdeep penetration, since the pressure in the obstacle is much lower than the critical pres-
sure. In this case, δout C 0.003. The total number of particles in a packing can also be determined if the weight of the
packing m and the weight of one particle M are known. If the assumption is made that the strikers are spherical,

M = ρp 
πd

3

6
 , (19)

the total number of particles in the packing will be

Ntot = 
m
M

 . (20)

When an accelerator is used (Fig. 1), we have m C 0.011 g, diameter of the bronze particles d = 55 µm,
Ntot C 1.419⋅107, and Nint C 6.156⋅106 particles interacting with the obstacle if the blocking is disregarded. Thus, taking
into account the blocking processes, we obtain N12 C 1290 and N23 C 3290, which is quite consistent in order of mag-
nitude with the experimental data of [15–17]. Figure 5 shows the dependence of the depth of penetration of particles
on the interaction time. As was to be expected, this dependence is close to the linear dependence. The interaction time
also determines the position of the particle in the flux interacting with the obstacle surface. The distribution of the par-
ticles over the depth is presented in Fig. 6. The curve n(H) has a pronounced maximum at a depth of 17–18 mm. The
limiting depth of penetration into the obstacle is expressed by the formula

Hmax =  ∫ 
t23

t32

 Umax (Θ) dΘ = ∫ 
t23

t32

 √p (Θ)
ρ

 dΘ (21)

and is 71 mm for steel. Unfortunately, the details of the process of interaction of a particle with the obstacle material
have not been adequately investigated and the experimental data on the change in the mass and size of the particle as
a result of the penetration can be found only in [14, 16, 17]. Therefore, a more detailed modeling of superdeep pene-
tration with determination of the mass flow through each cross section and the dependence of the concentration of the
introduced material on the penetration depth seems to be impossible at present. However, the above-described model
enables us to determine the character of the penetration of particles into different materials. To do this we must obtain
curves analogous to those presented in Fig. 4 for steel for other metals as well. As is seen from Fig. 7a, the process
of penetration of a particle flux generated by an accelerator into aluminum (Fig. 1) is similar in general terms to the
process of superdeep penetration of this flux into steel, while in silver (Fig. 7b) such penetration is impossible since
the background pressure remains invariably lower than the critical pressure. The penetration into lead proceeds most
actively (Fig. 7c) since the major part of the flow is working. Practically everywhere it proceeds with a velocity
Umax. But since the pressure generated in the obstacle by the particle flux is very low in lead and the velocity is

Fig. 7. Velocity curves for aluminum (a), silver (b), and lead (c): 1) Vp; 2)
Umax; 3) Umin. Up, m/sec; t, µsec.
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Umax D 100–220 m/sec, the limiting penetration depth Hmax determined from (21) is small in comparison with the
depth of penetration into aluminum or steel. In our case, we have Hmax C 16 mm for lead, whereas we have
Hmax C 98 mm for aluminum and Hmax C 71 mm for steel.

CONCLUSIONS

As the investigations carried out have shown, the process of superdeep penetration occurs when two basic con-
ditions are fulfilled. The condition necessary for realization of superdeep penetration is a thermoplastic softening of the
obstacle material in the local region immediately adjacent to the penetrating particle. The sufficient condition for su-
perdeep penetration is a rapid closing of the channel behind the particle under the action of the pressure generated in
the obstacle by the particle flux interacting with it. If this closing is quite rapid and the wake (channel in our case)
formed by the particle in the obstacle material closes completely, the penetrating particle moves in the obstacle material
without meeting resistance. An analog of the D’Alembert paradox [11] which, in the classical understanding, is char-
acteristic of a perfect fluid is realized. In our case, its realization becomes possible due to the external energy source
(particle flux) which does work providing a complete closing of the channel in the wake of the penetrating particles,
which allows them to move in the obstacle material without meeting resistance. The numerical model of gas-powder
flow, proposed in [14, 15], makes it possible to calculate the most important characteristics of superdeep penetration
(limiting depth, velocity of penetration, fraction of penetrating particle) and to determine the character of the process.
However, to describe superdeep penetration exhaustively, it is necessary to investigate the character of interaction of
particles with the incoming flux of the softened obstacle material in more detail and to find the dependences describing
the change in the size and mass of the particles in the process of their penetration deep into the obstacle.

The author is grateful to V. A. Shilkin for his participation in the discussion of the results, R. I. Shit’ for his
personal assistance in the work, and G. S. Romanov for constant support and participation in the discussion of the re-
sults of the investigations.

NOTATION

U0, velocity of the flux particles at the level of the obstacle surface, m/sec; p, pressure generated in the ob-
stacle by the particle flux, Pa; m, weight of the powder packing in the accelerator, kg; U, velocity of stationary flow
of the softened-material flux around a particle, m/sec; v, local velocity of the fluid in the wake, m/sec; Vp, velocity of
a particle after the penetration to the depth h = d, m/sec; D, detonation rate of the explosive, m/sec; h and H, running
and final depth of penetration of a particle, m; M, d, and S, mass, diameter, and midsection of the particle, kg, m, and
m2; ρ and ρp, densities of the obstacle and of the particle, kg/m3; τint, characteristic time of interaction, sec; τcl, time
of complete closing of the channel formed by a particle, sec; r and u, radial coordinate and velocity component of the
obstacle material, m and m/sec; ∆S, cross-sectional area of the channel (wake), m2; t, running time of loading, µsec;
Z, dimensionless parameter characterizing the penetration depth; T and a, temperature and thermal diffusivity of the
obstacle, K and m2/sec; ∆, thickness of the slip planes of the obstacle, m; pcr, minimum threshold pressure of super-
deep penetration, Pa; x, coordinate in the direction of particle motion; z and y, coordinates perpendicular to x; δ, frac-
tion of the flux particles; Fx, drag force acting on the penetrating particle from the obstacle, N; n and N, distribution
of particles and their number in the interaction cross section; σ, cross section of interaction of the particle flux with
the obstacle, m2; ∆t, physically small time interval; Θ, integration variable; R and L, radius and length of the acceler-
ated particle. Subscripts: min, minimum; max, maximum; int, interaction parameter; th, thermal parameter; cl, parame-
ter of filling (closing) of the channel; fin, parameter of completion of the process; 0, value of the parameter in the
particle flux; 00, initial value; p, parameters of the particle; e, parameters of the explosive; tot, total number of parti-
cles; out, high-velocity part of the flux which does not participate in the penetration; cr, critical; lim, limiting; SDP,
superdeep penetration.
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